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ABSTRACT:

Nucleotide sequence data from a 556 bp segment of the mitochondrial 16S ribosomal

RNA gene support the partition of emydid turtles into two distinct subfamilies. Phylogenetic analysis
identifies two major clades and corroborates previous morphological assignments of genera to the
subfamilies Deirochelyinae and Emydinae. Within the subfamily Deirochelyinae, Deirochelys ap-
pears to be the sister taxon to all other genera in the subfamily, and support is found for a clade
that includes Trachemys, Graptemys, and Malaclemys. However, the other generic relationships
within this subfamily are not well resolved. Within the Emydinae, the genus Terrapene is mono-
phyletic. Conversely, the genus Clemmys is paraphyletic, necessitating a new generic arrangement
of the species now considered to be in Clemmys, Emydoidea, and Emys.
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THE status of the genus Clemmys and
its proposed relationships to other genera
within the family Emydidae have had a
varied taxonomic history. Prior to 1964,
Clemmys included four North American
and four Eurasian species. McDowell
(1964) recognized the polyphyletic nature
of this group and partitioned the genus
such that New World forms were retained
in Clemmys and the Old World forms were
relegated to Mauremys and Sacalia. At the
time, emydid turtles were considered a
subfamily (Emydinae) of the Testudini-
dae. McDowell (1964) subdivided this sub-
family by reassigning the predominantly
Old World emydine turtles (including
Mauremys and Sacalia) to a new subfam-
ily, the Batagurinae. The three testudinid
subfamilies recognized by McDowell
(1964) now represent the three testudinoid
families Testudinidae, Emydidae, and Ba-
taguridae (Gaffney and Meylan, 1988).

As currently recognized, the family
Emydidae comprises 10 genera and 37
species (Gaffney and Meylan, 1988). It is
thought to have originated in North Amer-
ica where nine of the 10 genera currently
occur. Two exceptions to this North Amer-
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ican distribution include Emys, found in
Europe, North Africa, and parts of the
Middle East, and Trachemys, the range of
which encompasses portions of both North
and South America (Iverson, 1992). The
family clearly is monophyletic but has been
divided into two subfamilies by Gaffney
and Meylan (1988). The Deirochelyinae
includes the predominantly aquatic
Chrysemys, Deirochelys, Graptemys, Ma-
laclemys, Pseudemys, and Trachemys,
whereas the Emydinae includes both
aquatic and terrestrial species in the gen-
era Emys, Emydoidea, Clemmys, and
Terrapene. This arrangement has received
support from Seidel and Adkins (1989)
based on isoelectric focusing.
Relationships among the four genera of
emydine turtles have been the subject of
recurring debate. Clemmys (McDowell,
1964), Emys (Milstead, 1969), and Emy-
doidea (Bramble, 1974; Gaffney and Mey-
lan, 1988) all have been hypothesized to
be the sister taxon to Terrapene. The po-
sition of Emydoidea is particularly con-
troversial, as several investigators have in-
ferred a close relationship to Deirochelys
(Loveridge and Williams, 1957; McDow-
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ell, 1964; Tinkle, 1962; Zug, 1966) whereas
others have shown a close relationship be-
tween Emydoidea and the other emydine
genera (Bramble, 1974; Frair, 1982; Gaff-
ney and Meylan, 1988; Seidel and Adkins,
1989).

Within the Emydinae, only Clemmys
and Terrapene contain more than one spe-
cies. Milstead (1969) subdivided Terra-
pene into two species groups (i.e., T. car-
olina and T. coahuila; T. nelsoni and T.
ornata), an interpretation that generally is
well accepted. The relationships of the four
species of Clemmys are not as well estab-
lished. Some studies have suggested that
C. insculpta is basal (the sister taxon) to
the other three species (Merkle, 1975;) and
that C. muhlenbergii and C. guttata are
closest relatives (Parsons, 1962; Zug, 1966).
Merkle (1975) hypothesized that C. gut-
tata and C. marmorata were the most
closely related species, with C. muhlen-
bergii being their sister taxon and C. in-
sculpta being the most distantly related
taxon. However, Lovich et al. (1991) con-
cluded that C. muhlenbergii shares fewer
similarities with the other three species.

In this study, we examine phylogenetic
relationships among emydid turtles using
nucleotide sequence from the mitochon-
drial 16S ribosomal gene. We employ a
phylogenetic analysis to address three ma-
jor issues. (1) We test Gaffney and Mey-
lan’s (1988) hypothesis regarding the status
and generic composition of the subfamilies
Deirochelyinae and Emydinae. (2) We
concentrate specifically on relationships
within the genus Clemmys, and (8) in so
doing, we examine the phylogenetic status
of Clemmys relative to the other emydine
genera.

MATERIALS AND METHODS

We obtained blood samples from a sin-
gle individual for each of 15 emydid spe-
cies and two batagurid species. Represen-
tatives of the Emydinae included all four
currently recognized species of Clemmys
(C. marmorata, C. muhlenbergii, C. gut-
tata, and C. insculpta), three (of the four)
species of Terrapene (T. coahuila, T. or-
nata, and T. carolina), Emys orbicularis,

and Emydoidea blandingii. Representa-
tives of the Deirochelyinae included Dei-
rochelys reticularia, Trachemys scripta,
Graptemys geographica, Malaclemys ter-
rapin, Pseudemys concinna, and Chrys-
emys picta. Orlitia borneensis and Ma-
layemys subtrijuga were chosen as out-
groups because they (along with Sieben-
rockiella crassicollis) are the only
batagurids to have a karyotype (2N = 50)
like that of emydids (Bickham, 1975; Bick-
ham and Baker, 1976; Bickham and Carr,
1983; Carr and Bickham, 1981) and be-
cause the Bataguridae is considered the
sister taxon of the Emydidae (Gaffney and
Meylan, 1988).

Genomic DNA was extracted from 30-
50 ul of blood by incubation in 450 ul of
STE buffer (5.0 M NaCl, 2.0 M Tris-HCI,
0.5 M EDTA, pH 7.5), 25 ul of 20% SDS,
and 25 ul of proteinase-K at 10 pg/ml for
1 h. We then added 5M NaCl (150 ul) and
placed the solution on ice for 1 h, centri-
fuged it at 9000 RPM for 15 min on a
Savant HSC 10K Microcentrifuge, and ex-
tracted the supernatant with a phenol-
methylene chloride-isoamyl alcohol mix
(25:24:1). DNA was precipitated with an
equal volume of 100% isopropyl alcohol,
centrifuged at 9000 RPM for 1 min, and
washed in 70% isopropyl alcohol. Precip-
itated DNA was resuspended in 200 ul of
TE (1 mM Tris, 100 uM EDTA, pH 7.5).
We amplified a 598 bp portion of the 16S
gene of the mitochondrial DNA by PCR
with the primers LGL 381 (5'-ACC CCG
CCT GTT TAC CAA AAA CAT-3’) and
LGL 286 (5'-AGA TAG AAA CCG ACC
TGG AT-3'). These primers correspond to
positions 2487-2510 and 3104-3085 of the
human mitochondrial genome map, re-
spectively. These primers are “universal”
and were constructed based on similarities
between published mtDNA sequences of
diverse vertebrate taxa. Samples were am-
plified by 50 ul reactions which consisted
of the following: 0.1-0.5 ug genomic DNA;
5 ul 10X buffer (0.1 M Tris-HCI pH 8.5,
0.025 M MgCl,, 0.5 M KCl), 5 ul dNTP
mix (2 mM dATP, dTTP, dCTP, dGTP,
in 0.1 M Tris-HCI, pH 7.9), 5 ul of a 10
uM solution of each primer, 0.025-0.5 ul
Taq DNA polymerase, and brought up to
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volume with deionized water. Amplifica-
tions were done by 32 cycles of 95 C for
45 s of denaturing, 50 C for 30 s of an-
nealing, 70 C for 2.5 min of extension, and
4 s of auto-extension. The PCR products
were used to sequence a total of 566 bp
using an Applied Biosystems 373A Auto-
mated DNA sequencer employing dye la-
belled terminators (Ferl et al., 1991). Se-
quence alignments were made using the
computer software package SeqEd from
Applied Biosystems Inc., Foster City, Cal-
ifornia.

Phylogenetic relationships were recon-
structed using Paup 3.1 (Swofford, 1990).
Transversions were weighted 3:1 relative
to transitions and gaps were treated as
missing data. A heuristic analysis using 100
searches with the random addition of taxa
was used to search for trees of the shortest
length. We estimated the reliability of the
branches of the shortest trees by using a
bootstrap analysis with 250 replicates. Sub-
sequently, an exhaustive search was per-
formed separately on just the emydine taxa,
using Deirochelys as the outgroup, and on
just the deirochelyine taxa, using Clemmys
guttata and Terrapene coahuila as the
outgroup. Again, bootstrapping was per-
formed to test the reliability of specific
nodes of the trees.

RESULTS AND DISCUSSION

Unambiguous alignment was achieved
for a 556 bp segment of the 16S ribosomal
gene for the 17 taxa studied (Fig. 1). We
found a total of 140 variable nucleotide
positions of which 105 had only two nu-
cleotides present among the taxa, 20 had
three or four nucleotides, and 15 were
variable by deletion-duplication events
(including three with nucleotide variation
as well). Of the 105 variable positions pos-
sessing only two nucleotides, 56 were C «
T transitions and 29 were A < G transi-
tions. There were 20 transversions includ-
ingsix A~ C,13T ~ A,andone G < T.
Of the 20 positions that had three or four
alternative nucleotides, one had A-G-C,
two had A-G-T, 14 had A-C-T, one had
T-G-C, and two had all four nucleotides.
Just considering sites at which only two

nucleotides are present (N = 105), the tran-
sition : transversion ratio is 4.25:1.

Phylogenetic analysis of all species using
a heuristic search (Swofford, 1990) iden-
tified four most-parsimonious trees of 323
steps. In each of these trees, the two sub-
families of emydid turtles were readily dis-
tinguished (Fig. 2). In the bootstrap anal-
ysis, the emydine clade occurred in 94%
of the trees and the deirochelyine clade
occurred in 99% of the trees (Fig. 3). Thus,
monophyly for these two taxa, as suggested
by Gaffney and Meylan (1988), is strongly
supported in this study and is consistent
with another molecular data set obtained
by isoelectric focusing (Seidel and Adkins,
1989). Synapomorphies that define the
Deirochelyinae were observed at positions
78, 79, 166, 245, 263, 336, 377, 443, and
500. Synapomorphies that defined the
Emydinae were found at positions 212, 231,
253, 256, 260, 362, 385, and 435. These
were all transitions.

In order to explore more fully the re-
lationships of the emydine genera, we
reanalyzed the data for the nine emydine
species using only Deirochelys as an out-
group. An exhaustive search for all most
parsimonious trees was performed which
yielded two trees with a length of 166.
These trees differed only in the relation-
ships of the three species of Terrapene.
These were combined in a strict-consensus
tree on which the results of bootstrap anal-
ysis using 250 replicates are illustrated (Fig.
4). The monophyletic nature of the genus
Terrapene, the box turtles, is supported in
74% of the bootstrap trees. A clade in-
cluding T. carolina and T. ornata was
weakly supported (32% of the trees in the
bootstrap trees and one of the two most-
parsimonious trees), which possibly con-
firms the arrangement of Milstead (1969).
The only other polytypic genus within this
group, Clemmys, does not appear to be
monophyletic. The position of C. guttata
is problematic in that it falls outside the
clade that includes all of the rest of the
emydine taxa. However, the latter clade
is only supported by 32% of the bootstrap
trees. Strong support (93% of the bootstrap
and both of the most-parsimonious trees)
was found for a close relationship between
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: C. muhlenberg!
C. marmorata
Emydoidea
Emys
T. carolno
T. coohubic
T. omota

=

C. gutrata

C. guttata

Trachemys
Malaclemys

C. inscuiota

C. muhlenbergi
C. motmorata
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T. coohulic
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Trachemys
==
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FIG. 2.—Four most-parsimonious trees found with a heuristic search of the 556 bp sequence of the
mitochondrial 168 gene from 15 taxa of emydid turtles and using two batagurid species as outgroups. Note
that in all trees the emydid taxa are separated into two clades that correspond to the Emydinae and
Deirochelyinae of Gaffney and Meylan (1988) and that the genus Clemmys is paraphyletic.

Clemmys muhlenbergii and C. insculpta,
two species found together in the eastern
United States (Iverson, 1992). These two
form a clade that is the sister taxon to the
remaining six emydine taxa (Fig. 4). A
clade including (Emys orbicularis (Emy-
doidea blandingii, C. marmorata)) is sup-
ported by 54% of the bootstrap trees and
is the sister taxon to the genus Terrapene.
The arrangement of the emydine taxa in
the two trees produced in the exhaustive
search was identical to the two arrange-
ments for the emydine clade observed in
the heuristic search conducted using the
entire data set (Fig. 2). That significant

phylogenetic signal was present in the data
set was indicated by the distribution of the
trees being significantly skewed (gl =
—0.843).

An exhaustive search for all most par-
simonious trees was conducted for the six
deirochelyine taxa using Clemmys guttata
and Terrapene coahuila as the outgroup
(Fig. 4). This search yielded a single most-
parsimonious tree of 149 steps (Fig. 4).
This tree is identical to one of the two
arrangements of the deirochelyine taxa
found in the heuristic search using the en-
tire data set (Fig. 2). Deirochelys is well
supported as the sister taxon to the rest of
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C. insculpta

32

C. muhlenbergi

30 C. marmorata

Emydoidea

o4

Emys

T. carolina
70

T. coahuila

I. ornata

100

C. guttata

Deirochelys

99

6

Trachemys
71

Graptemys

79

Mclaclemys

Pseudemys

Chrysemys

Orlitic

Malayemys

FI1G. 3.—A strict-consensus tree was constructed from the four most-parsimonious trees in Fig. 2. The tree
has a consistency index of 0.929. The numbers above certain branches are the percentage of trees generated
by a bootstrap analysis that supported that particular branch.

the subfamily (85% of the bootstrap trees).
Within the rest of the Deirochelyinae, a
clade comprised of Trachemys, Grapte-
mys, and Malaclemys occurred in 96% of
the bootstrap trees (Fig. 4). A sister-taxon
relationship between Graptemys and
Trachemys was weakly supported (66% of
the bootstrap trees) as was a sister-taxon
relationship between Pseudemys and
Chrysemys (63% of the bootstrap trees).
Tree distributions were significantly
skewed (gl = —1.4) indicating phyloge-
netic signal was present in the data set.
Although monophyly for the two sub-

families is strongly supported by our nu-
cleotide sequence data for the 16S gene
and is consistent with recent morphologi-
cal analysis (Gaffney and Meylan, 1988),
the relationships among the genera within
each subfamily do not closely correspond
to those found in any previous analysis.
Within the Emydinae, the traditional con-
generic relationships of the three species
of Terrapene are confirmed, but the same
cannot be said for Clemmys. Our data sug-
gest that this genus, as currently recog-
nized, is paraphyletic. This could result in
taxonomic name changes with Clemmys
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C. insculpta
Q3 P

C. muhlenbergi

C. marmorata
32

54 L  Emydoidea
Emys

T. carolina
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T. coahuila

I. ornata

C. guftata

Deirochelys

I. coahuila

C. guftata

Deirochelys

100 o Trachemys

04 —  Graptemys

85 Malaclemys

Pseudemys

63

Chrysemys

FIG. 4.—A strict-consensus of two most-parsimonious trees of length 166 was generated from the results
of an exhaustive search of (top) nine emydine taxa using Deirochelys as the outgroup. A single tree with a
length of 149 (bottom) was produced by an exhaustive search of six deirochelyine taxa using Terrapene
coahuila and Clemmys guttata as outgroups. Numbers refer to the percent of trees in a bootstrap analysis
that supported that branch.
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marmorata and Emydoidea (Holbrook,
1838) being synonymized with Emys (Lin-
naeus, 1758). However, our data do not
fully resolve this question. What is clear,
however, is that the generic relationships
of the taxa assigned to Clemmys, Emys,
and Emydoidea appear to be in need of
reconsideration. In order to test this theory
of paraphyly for Clemmys, we reanalyzed
the data using all 17 taxa, but we con-
strained the analysis to include only trees
with a monophyletic Clemmys. A heuristic
search using 100 replicates with random
addition of taxa found 14 most-parsimo-
nious trees of length 331. This compares
to the four most-parsimonious trees found
in the unconstrained heuristic search (Fig.
2) with lengths of 323 steps. Therefore,
eight additional steps are required in the
analysis in order to support the traditional
generic arrangement of the four species
presently included in the genus Clemmys.

Within the subfamily Deirochelyinae,
Gaffney and Meylan (1988) considered
Graptemys, and possibly Malaclemys, to
be the most basal branch of a mostly pec-
tinate phylogeny with the following
branching sequence: ((Graptemys Mala-
clemys) (Chrysemys (Deirochelys (Trach-
emys Pseudemys)))). As in Gaffney and
Meylan (1988), a close relationship be-
tween Malaclemys and Graptemys is sup-
ported by the molecular data, although
they were not found to be sister taxa. How-
ever, our demonstration of a relationship
between Trachemys and the Graptemys-
Malaclemys clade is inconsistent with the
morphological analysis of Gaffney and
Meylan (1988). Moreover, the status of
Deirochelys as the sister taxon to all other
deirochelyine genera is well supported by
the molecular data (Fig. 4) and in conflict
with the relationships proposed by Gaff-
ney and Meylan (1988). The relationships
of the deirochelyine genera presented here
must be considered as preliminary, be-
cause only a single species from each genus
was included and because the phylogeny
is based on nucleotide sequence data from
a single mitochondrial gene. In particular,
additional species of the polytypic genera
Pseudemys, Trachemys, and Graptemys

=+ BICKHAM, ]. W.

should be included in future analyses, and
additional genes, both mitochondrial and
nuclear, should be analyzed.

In summary, we have presented evi-
dence, based upon nucleotide sequence
analysis of the mitochondrial 16S gene, that
the emydid turtles should be divided into
two monophyletic subfamilies correspond-
ing to the Emydinae and Deirochelyinae
of Gaffney and Meylan (1988). Except for
the placement of Deirochelys as the sister-
taxon to the rest of the genera, the ar-
rangement of the genera within the Dei-
rochelyinae was not well resolved, but
within the emydinae, strong evidence was
obtained for a paraphyletic genus Clem-
mys. We have demonstrated that the 16S
gene appears to have good resolving power
for relatively ancient divergences, such as
that between the two subfamilies, but in-
tergeneric affinities are less well resolved.
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