Phylogeny and taxonomy of endangered South and South-east Asian freshwater turtles elucidated by mtDNA sequence variation (Testudines: Geoemydidae: *Batagur*, *Callagur*, *Hardella*, *Kachuga*, *Pangshura*)

P. PRASCHAG, A. K. HUNDSDÖRFER & U. FRITZ

Submitted: 4 April 2007 Accepted: 28 June 2007 doi:10.1111/j.1463-6409.2007.00293.x Praschag, P., Hundsdörfer, A. K. & Fritz, U. (2007). Phylogeny and taxonomy of endangered South and South-east Asian freshwater turtles elucidated by mtDNA sequence variation (Testudines: Geoemydidae: *Batagur*; *Callagur*; *Hardella*, *Kachuga*, *Pangshura*). — *Zoologica Scripta*, *36*, 429–442.

Using DNA sequences of the mitochondrial cytochrome b gene, we investigated phylogeny and taxonomy of South and South-east Asian turtles of all species and subspecies of the genera Batagur, Callagur, Hardella, Kachuga and Pangshura. We found three major clades: (i) a moderately to well-supported clade containing all large riverine species assigned so far to Batagur; Callagur and Kachuga; (ii) a well-supported monophylum comprising the four Pangshura species; and (iii) Hardella that could constitute either the sister-taxon of Pangshura or of a clade comprising Batagur, Callagur, Kachuga and Pangshura. The genus Kachuga is clearly polyphyletic. Therefore, we recommend placing all Batagur, Callagur and Kachuga species in one genus. According to the International Code of Zoological Nomenclature Batagur Gray, 1856, being originally erected at higher rank, takes precedence over the simultaneously published name Kachuga Gray, 1856, and the younger name Callagur Gray, 1870, resulting in an expanded genus Batagur. Indonesian and Malaysian Batagur baska proved to be highly distinct from our sequences of this species from the Sundarbans (Bangladesh, adjacent India), suggesting that a previously unidentified species is involved. This finding is of high conservation relevance in the critically endangered B. baska. The currently recognized subspecies within Hardella thurjii, Pangshura smithii and P. tentoria do not correspond well with mtDNA clades. Considering that the two subspecies of *H. thurjii* are likely to be based only on individual ontogenetic differences, we propose abandoning the usage of subspecies within H. thurjii. In the Ghaghra River, Uttar Pradesh (India) we detected shared haplotypes in P. smithii and P. tentoria, implying that the unusual morphological characters of the Ghaghra River population of *P. tentoria* could be the result of interspecific hybridization.

Peter Praschag, Am Katzelbach 98, A-8054 Graz, Austria. E-mail: peter@praschag.at

Anna K. Hundsdörfer, Museum of Zoology (Museum für Tierkunde), Natural History State Collections Dresden, Königsbrücker Landstr. 159, D-01109 Dresden, Germany. E-mail: anna.bundsdoerfer@snsd.smwk.sachsen.de

Corresponding author: Uwe Fritz, Museum of Zoology (Museum für Tierkunde), Natural History State Collections Dresden, Königsbrücker Landstr. 159, D-01109 Dresden, Germany. E-mail: uwe.fritz@snsd.smwk.sachsen.de,

Introduction

The genera *Batagur, Callagur, Hardella, Kachuga* and *Pangshura* belong to the family Geoemydidae and include 10 in part highly endangered South and South-east Asian turtle species (Table 1; van Dijk *et al.* 2000; IUCN 2006). Geoemydidae represent the sister group of land tortoises (Testudinidae; Gaffney & Meylan 1988; Shaffer *et al.* 1997) and comprise 65 small to large-sized species that occur, except the New World

genus *Rhinoclemmys*, in Asia, North Africa and Europe (Fritz & Havaš 2007). Most geoemydids are freshwater turtles; some are adapted to estuarine or terrestrial habitats (Ernst *et al.* 2000). *Batagur, Callagur* and *Hardella* are monotypic genera of large-sized, riverine species with maximum shell lengths of approximately 50–60 cm. *Kachuga* and *Pangshura* contain three and four species, respectively (Ernst *et al.* 2000; Das 2001; E. O. Moll, pers. comm.). Until Das (2001) removed

 Table 1 Currently recognized species and subspecies within Batagur, Callagur, Hardella, Kachuga and Pangshura according to Fritz & Havaš (2007).

	_
Batagur Gray, 1856	
Batagur baska (Gray, 1831)	
Callagur Gray, 1870	
Callagur borneoensis (Schlegel & Müller, 1844)	
Hardella Gray, 1870	
Hardella thurjii thurjii (Gray, 1831)	
Hardella thurjii indi Gray, 1870	
Kachuga Gray, 1856	
Kachuga dhongoka (Gray, 1835)	
Kachuga kachuga (Gray, 1831)	
Kachuga trivittata (Duméril & Bibron, 1835)	
Pangshura Gray, 1856	
Pangshura smithii smithii (Gray, 1863)	
Pangshura smithii pallidipes (Moll, 1987)	
Pangshura sylhetensis Jerdon, 1870	
Pangshura tecta (Gray, 1831)	
Pangshura tentoria tentoria (Gray, 1834)	
Pangshura tentoria circumdata (Mertens, 1969)	
Pangshura tentoria flaviventer Günther, 1864	

the small-sized *Pangshura* species *P. smithii*, *P. sylhetensis*, *P. tecta* and *P. tentoria* (maximum shell lengths 20–26.5 cm; Ernst *et al.* 2000) from *Kachuga*, these four species were placed for more than a century with the three large-sized *Kachuga* species (maximum shell lengths 48–58 cm; Ernst *et al.* 2000) into the genus *Kachuga* (Boulenger 1889; Siebenrock 1909; Smith 1931; Wermuth & Mertens 1961, 1977; Moll 1986, 1987; Ernst & Barbour 1989; Das 1991, 1995; Ernst *et al.* 2000). Like *Batagur*, *Callagur* and *Hardella*, the species of *Kachuga* are confined to rivers, while *Pangshura* species also occur in standing water bodies (Moll 1986, 1987).

All Batagur, Callagur, Hardella, Kachuga and Pangshura species are characterized by a more or less well-defined sexual dimorphism. Males are distinctly smaller sized than females; the most extreme size dimorphism occurs in *H. thurjii* with males reaching only approximately 17.5 cm maximum shell length, whereas females may have straight-line shell lengths of up to 61 cm (Ernst *et al.* 2000). Among the large-sized species, *B. baska, C. borneoensis, K. kachuga* and *K. trivittata* share another striking sexual dimorphism. Males have conspicuously coloured heads and necks, and in part also shells, a character state that is most pronounced during the breeding season (Theobald 1876; Anderson 1879; Boulenger 1889; Klingelhöffer & Mertens 1944; Moll 1980, 1986; Moll *et al.* 1981; Ernst & Barbour 1989; Ernst *et al.* 2000).

Harvesting of eggs, overexploitation of turtles for food and habitat alteration endanger all the large riverine species seriously and have brought *B. baska*, *C. borneoensis*, *K. kachuga* and especially *K. trivittata* to the fringe of extinction. Since the late 1960s, restocking programs are conducted for *B. baska*

and *C. borneoensis* and similar efforts are currently attempted for *H. thurjii*, *K. dhongoka*, *K. kachuga* and *K. trivittata* (van Dijk *et al.* 2000; Kuchling *et al.* 2006; E. O. Moll, pers. comm.). Understanding genetic differentiation of these turtles would significantly contribute to more powerful conservation strategies. However, few data on genetic variation are available until now and no previous study focused on geographical variation.

Using a patchy taxon sampling, a first molecular hypothesis for *Batagur*, *Callagur*, *Hardella*, *Kachuga* and *Pangshura* was established by Spinks *et al.* (2004), providing evidence that these genera represent a monophyletic group. Based on a complete taxon sampling of all species and subspecies, here we use sequence variation of a highly informative mitochondrial marker, the cytochrome *b* gene: (i) to reconstruct their phylogeny; (ii) to investigate geographical variation within most taxa; and (iii) to test whether the subspecies within *H. thurjii*, *P. smithii* and *P. tentoria* correspond with distinct mtDNA clades.

Materials and methods

Sampling

Most turtles used for sampling are long-term captives from the live collection of Peter and Reiner Praschag in Graz, Austria. These turtles will be or have been deposited into the collections of natural history museums upon their natural death (Appendix 1). Voucher photographs of all used turtles are housed in the Museum of Zoology Dresden and the Natural History Museum Vienna. Most specimens were personally collected from the 1970s to the early 1990s by Peter and Reiner Praschag or shipped by animal dealers in Dhaka (Dacca), Bangladesh and Mumbai (Bombay), India to Europe during this time. Of C. borneoensis and K. trivittata only specimens without locality data were available for study. Five samples of B. baska originate from turtles kept in the Prague Zoo. In addition to our known-locality samples, we used GenBank sequences that were from individuals of unknown geographical provenance to enlarge sample size and to test how variation of these sequences, which could originate from turtles collected in other regions, corresponds to our known-locality samples (Appendix 1). Tissue samples were either obtained by clipping off a tiny piece of the webbing of the toes of live turtles or by dissection of carcasses (thigh muscle). Samples were preserved in ethanol, and stored at -20 °C until processing. Remaining tissue and DNA samples are permanently kept at -80 °C in the tissue sample collection of the Museum of Zoology Dresden.

Laboratory procedures

Total genomic DNA was extracted from samples by overnight incubation at 37 °C in lysis buffer (6% DTAB, 5 M NaCl, 1 M Tris–HCl, 0.5 M EDTA, pH 8.0) including 0.5 mg of

proteinase K (Merck), and subsequent purification following the DTAB method (Gustincich et al. 1991). DNA was precipitated from the supernatant with 0.2 volumes of 4 M LiCl and 0.8 volumes of isopropanol, centrifuged, washed, dried and resuspended in TE buffer. Two fragments (overlapping by approximately 300 bp), together comprising almost the complete cyt b gene and the adjacent portion of the tRNA-Thr gene, were amplified using the two primer pairs mt-c-For2 5'-TGA GG(AGC) CA(AG) ATA TCA TT(CT) TGA G-3' plus mt-f-na3 5'-AGG GTG GAG TCT TCA GTT TTT GGT TTA CAA GAC CAA TG-3' or mt-a-neu3 5'-CTC CCA GCC CCA TCC AAC ATC TC(ACT) GC(ACT) TGA TGA AAC TTC G-3' plus mt-E-Rev2 5'-GC(AG) AAT A(AG)(AG) AAG TAT CAT TCT GG-3'. PCR was performed in a 50 µL volume (50 mM KCl, 1.5 mM MgCl, and 10 mM Tris-HCl, 0.5% Triton X-100, pH 8.5) containing 1 unit of Taq DNA polymerase (Bioron), 10 pmol dNTPs (Eppendorf) and 10 pmol of each primer. After initial denaturing for 5 min at 95 °C, 35-40 cycles were performed with denaturing 1 min at 95 °C, annealing 1 min at 55 °C, and primer extension for 2 min at 72 °C, followed by a final elongation of 10 min at 72 °C. PCR products were purified by precipitation under the following conditions: 1 volume PCR product (30 μ L), 1 volume 4 M NH₄Ac (30 μ L) and 12 volumes EtOH (100%; 360 µL). DNA was pelleted by centrifugation (15 min at 16060 g) and the pellet washed with 70% ethanol. The pellet was dissolved in $20 \,\mu\text{L}$ H₂O. PCR products were sequenced with the primers mt-c-For2 and mt-E-Rev2 on an ABI 3130 sequencer (Applied Biosystems) or on an ABI 3730XL sequencer (Applied Biosystems). DNA extraction and sequencing of samples 3113-3115 and 3094 were repeated, whereby the primer mt-a-neu3 was replaced by the primer CytbG (5'-AAC CAT CGT TGT (AT)AT CAA CTA C-3'; Spinks et al. 2004). None of the sequences contained internal stop codons, and nucleotide frequencies corresponded to those known for coding mtDNA; we therefore conclude that we amplified and sequenced mtDNA and not nuclear copies of mitochondrial genes.

Phylogenetic and population genealogy analyses

GenBank sequences of *Geoclemys bamiltonii* (Gray, 1831) and *Morenia ocellata* (Duméril & Bibron, 1835) were included as outgroups (Appendix 1), according to the findings of Spinks *et al.* (2004). Sequences were aligned with CLUSTALW using default parameters as implemented in MEGA 3.0 (Kumar *et al.* 2004). For the ingroup species, 691 of 1067 aligned sites were constant, 67 characters were variable but parsimony-uninformative, and 309 variable characters were parsimony-informative.

Data were analysed under the optimality criteria Maximum Parsimony (MP; equal weighting), Maximum Likelihood (ML), and the cluster algorithm Neighbor-Joining (NJ; with model corrected maximum likelihood distances) as implemented in PAUP* 4.0b10 (Swofford 2002), as well as Bayesian inference of phylogeny as implemented in MRBAYES 3.1 (Ronquist & Huelsenbeck 2003). Bayesian analysis (BA) was performed using four chains of 1 000 000 generations sampling every 100 generations and with the first 1000 generations discarded as burn-in (with which only the plateau of the most likely trees was sampled). The best evolutionary model for the data (ML calculation and ML distances) was established by hierarchical likelihood testing using MODELTEST 3.06 (best-fit model: TrN + I + G; Posada & Crandall 1998). Under ML we calculated trees without using a starting tree; parameters: Lset Base = (0.3163 0.3532 0.1019), Nst = 6, Rmat = (1.0000 14.0790 1.0000 1.0000 16.6295), Rates = Gamma Shape = 3.1376, Pinvar = 0.5722. Bootstrap support values were calculated with PAUP* 4.0b10 for MP with nreps = 1000 and NJ with nreps = 100 000 based on ML distances, as well as for ML with GARLI 0.95 with the settings 'bootstrapreps = 100' and 'genthreshfortopoterm = 5000'. These bootstrap settings are advised in the manual of the program (Zwickl 2006).

Especially on the subspecies and population levels, dichotomous phylogenetic analyses may be misleading due to persisting ancestral haplotypes. Such genealogies are often multifurcated and need to be depicted using algorithms allowing for reticulations (Posada & Crandall 2001). Therefore, we calculated parsimony haplotype networks as implemented in TCS 1.21 (Clement *et al.* 2000) where appropriate.

Results

Phylogenetic analyses

All tree-building methods reveal Pangshura as perfectly supported monophylum with bootstrap or posterior probability values of 100% (Fig. 1). All other species are located outside of this Pangshura clade; BA and ML suggest with weak support Hardella as sister-taxon of Pangshura. Under MP and NJ (not shown), Hardella constitutes with weak support the sister of Pangshura plus all other investigated taxa. Kachuga is clearly polyphyletic and its three species appear with the other large riverine taxa (B. baska, C. borneoensis) in a moderately to well-supported monophylum. It includes two weakly to well-supported subclades; one containing the sequences of B. baska and K. kachuga, and the other C. borneoensis, K. dhongoka and K. trivittata. Within the first, well-supported subclade, the sequences of B. baska from the Sundarbans (sample numbers 3088–3089, 3123) are highly distinct from six other B. baska sequences. Five of these sequences originate from Indonesian and Malaysian turtles (3788-3092) and the sixth is a sequence of unknown geographical provenance downloaded from GenBank (AY43600; Spinks et al. 2004). The Sundarban B. baska sequences are consistently placed as sister-taxon of K. kachuga plus the Indo-Malaysian B. baska. The Indo-

Fig. 1 A-C. Phylogenetic relationships of Batagur, Callagur, Hardella, Kachuga and Pangshura as revealed by analysis of a 1067 bp long mtDNA fragment (partial cytochrome *b* gene). On the right, recommended generic assignments. -A. Bayesian tree. -B. Maximum Likelihood tree. -C. Strict consensus of 128 parsimony trees (758 steps; CI = 0.5884, RI = 0.9413). For all trees, support values are presented at nodes. ML tree includes ML bootstrap values (top) and NJ bootstrap values using ML distances (bottom) only at crucial nodes; dashes indicate that the respective branch is not supported. BA, posterior probabilities greater than 0.95; ML, MP and NJ, bootstrap values greater than 50 except in ML tree, where in some cases lower values are included for clarity. Numbers preceding species names are MTD T or accession numbers and refer to the Appendix 1. Branch lengths for the BA and ML trees proportional to the mean number of substitutions per site; branch lengths for the MP tree arbitrary. Outgroup taxa (Geoclemys hamiltonii, Morenia ocellata) removed for clarity.

Malaysian sequences of *B. baska* differ by uncorrected average *p* distances of 4.22% from the Sundarban *B. baska* and 5.05% from *K. kachuga*; these distances are of approximately the same magnitude as the sequence divergence between the Sundarban *B. baska* and *K. kachuga* (Table 2). Within the second subclade, *K. trivittata* is with high support sister of *C. borneoensis*; *K. dhongoka* is suggested as sister-taxon of *C. borneoensis* + *K. trivittata*.

The two subspecies of *H. thurjii* are only badly supported. *Hardella t. thurjii* sequences from Uttar Pradesh (India) and Bangladesh are paraphyletic with respect to the sequences of the Indus River subspecies *H. t. indi*.

Within *Pangsbura*, all species correspond with wellsupported clades. *Pangsbura tecta* and *P. sylhetensis* are the successive sister-taxa of *P. tentoria* + *P. smithii*. One sequence originating from a turtle collected in the Ghaghra River

(Uttar Pradesh, India) that was morphologically identified as an intergrade between P. tentoria circumdata and P. tentoria flaviventer (sample number 3115) is nested within P. smithii however; another intergrade (3114) as well as a turtle identified as P. smithii pallidipes (3113) from the same locality occur in the P. tentoria clade. Within P. tecta, sequences from Bangladeshi turtles (sample numbers 3117-3119) plus a GenBank sequence of unknown origin (AY34583) are suggested as a moderately to well-supported clade (ML: 79, MP: 82, NJ: 85, BA: 0.98) that is either embedded within a polytomy comprising sequences from Pakistani and Indian turtles or those sequences are with weak support sister to the Bangladeshi sequences. The currently recognized subspecies of P. smithii and P. tentoria generally do not correspond well with mtDNA clades. Within P. smithii there is no phylogenetic differentiation at all paralleling the two recognized subspecies P. s. smithii and

P. s. pallidipes. In *P. tentoria*, the phylogenetically most distinctive subspecies is *P. t. circumdata* of which nearly all sequences occur in a moderately supported clade with bootstrap values of 73 (ML), 75 (MP) and 81 (NJ); however, under BA posterior probabilities are below 0.95. Four sequences of *P. t. tentoria* from the Mahanadi River (Orissa, India; sample numbers 3106–3109) occur in a similarly supported clade (bootstrap support of 79 under ML, 90 under MP, 92 under NJ; posterior probability of 0.98 under BA) that is under ML sister of all other sequences within *P. tentoria*, including the clade of *P. t. circumdata*.

Network analyses of population genealogy

Batagur baska. The three *B. baska* sequences from the Sundarbans represent the same haplotype, which is highly distinct from the GenBank sequence AY434600 of *B. baska* and a third haplotype that was found in our five B. baska samples from Indonesia and Malaysia. This haplotype differs by one mutation step from the GenBank sequence. Using TCS, the Sundarban haplotype is not connected with the two other B. baska haplotypes if 90%–95% criteria are applied for the network probability. If a connection is enforced, the Sundarban haplotype is separated by 44 and 45 mutation steps from the GenBank haplotype and the haplotype of the Indonesian and Malaysian samples, respectively, a distance that is of a similar degree to the differentiation when the B. baska haplotypes and K. kachuga haplotypes are compared. Within K. kachuga, two haplotypes occur that differ from one another by two mutations steps. These two K. kachuga haplotypes are separated from the B. baska haplotype from the Sundarbans by 54 mutation steps each and from the B. baska GenBank sequence and the Indo-Malaysian B. baska haplotype by 52 or 53 mutation steps.

Fig. 1 Continued.

Hardella tburjii. Within *H. tburjii* only weak differentiation occurs. Among the ten sequences three haplotypes were found, differing in one to two mutation steps. The ancestral haplotype under coalescence theory (outgroup probability: 0.7407) is connected over one mutation step with each other haplotype; this ancestral haplotype is represented by three *H. t. thurjii* sequences (3090: Gompti River, Uttar Pradesh, India; 3549: West Bengal, India; GenBank sequence AY434603). The five *H. t. indi* differ in one mutation step from the ancestral haplotype; one *H. t. thurjii* sequence from the Gompti River (3094) is identical with the haplotype occurring in *H. t. indi*. The third haplotype is represented by only one *H. t. thurjii* sequence from Dhaka, Bangladesh (3155), also connected over one mutation step with the ancestral haplotype.

Pangshura smithii and P. tentoria. The nine investigated *P. smithii* sequences represent five haplotypes (S1–S4, T5) and the 23 *P. tentoria* sequences nine haplotypes (S1, T1–T8; Table 3). Between haplotypes T1–T8 occur significantly

more mutation steps when compared to S1–S4 (Fig. 2). With two exceptions, haplotypes S1–S4 and T1–T8 correspond perfectly with *P. smithii* and *P. tentoria*, respectively. One turtle from the Ghaghra River (Uttar Pradesh, India), identified as an intergrade between the two *P. tentoria* subspecies *circumdata* and *flaviventer* (sample number 3115), yielded the most common haplotype (S1) occurring in *P. smithii*. In contrast, another morphologically similar individual (3114) from the same locality yielded the most common haplotype of *P. tentoria* (T1). Among five Ghaghra River turtles identified as *P. s. pallidipes*, four (3110–3112, 3116) bore haplotype S1 but the fifth (3113) yielded a haplotype (T5) that differs only in one mutation step from the most common haplotype of *P. tentoria*, T1.

Despite these shared haplotypes of both species, haplotype networks of *P. smithii* and *P. tentoria* are highly distinct and not connected if 90%–95% probability thresholds are applied, corresponding with a connection limit of 20 and 14 steps, respectively. If a connection is enforced, the haplotypes

	<i>G.</i> <i>hamiltonii</i>	M. ocellata	B. baska	'B. baska'	C. borneoensis	H. t. thurjii	H. t. indi	K. dhongoka	<i>K.</i> kachuga	K. trivittata	P. s. smithii	P. s. pallidipes	P. sylhetensis	P. tecta	P. t. tentoria	P. t. circumdata	P. t. flaviventer
Geoclemys hamiltonii																	
Morenia ocellata	15.70	I															
<i>Batagur baska</i> (Sundarbans)	12.71	13.08	0														
'Batagur baska' (Indo-Malaysia)	13.59	14.24	4.22	0.03													
Callagur borneoensis	13.26	13.99	8.27	9.40	0.13												
Hardella thurjii thurjii	14.17	13.37	10.91	11.66	10.44	0.08											
Hardella thurjii indi	14.22	13.43	10.97	11.72	10.40	0.10	0										
Kachuga dhongoka	13.52	13.95	8.28	10.16	7.12	11.69	11.74	0.10									
Kachuga kachuga	13.81	13.60	4.97	5.05	8.95	10.89	10.97	9.19	0.09								
Kachuga trivittata	13.63	13.80	8.72	9.46	5.13	11.02	10.97	8.11	9.56	Ι							
Pangshura smithii smithii	14.81	15.73	11.37	12.29	13.29	13.57	13.61	12.38	12.15	13.73	0.27						
Pangshura smithii pallidipes	14.79	15.64	11.34	12.34	13.17	13.47	13.50	12.33	12.18	13.59	0.17	0					
Pangshura sylhetensis	15.35	15.21	11.70	12.44	12.82	13.26	13.29	12.20	11.90	12.75	9.18	9.19	0.19				
Pangshura tecta	15.37	14.60	11.06	11.50	12.31	13.10	13.14	11.73	11.54	12.89	6.77	6.79	7.10	0.37			
Pangshura tentoria tentoria	14.73	14.71	11.20	11.72	13.27	13.00	13.05	12.61	12.13	13.03	5.59	5.60	8.29	6.13	0.32		
Pangshura tentoria circumdata	14.59	14.57	11.35	11.62	13.42	12.94	12.99	13.06	12.05	13.19	5.74	5.75	8.31	6.03	0.56	0.15	
Pangshura tentoria flaviventer	14.62	14.69	11.19	11.63	13.29	12.89	12.94	12.75	12.06	13.06	5.69	5.69	8.27	5.98	0.26	0.31	0

On the diagonal the within-taxon divergence is given in bold.	
s (percentages) between investigated species and subspecies and their outgroups.	ura smithii and P. tentoria (Ghaghra River, samples 3113–3115) not included.
Table 2Uncorrected average p distances	Sequences of putative hybrids of Pangsh1

Taxon	Locality	Sequence	Haplotype
Pangshura smithii smithii	Pakistan: Indus River System	MTD T 3147	S2
Pangshura smithii smithii	India: Assam: Tezpur: Brahmaputra River	MTD T 3125	S4
Pangshura smithii smithii	India: Assam: Tezpur: Brahmaputra River	MTD T 3126	\$3
Pangshura smithii smithii	Unknown	AY434589	S2
Pangshura smithii pallidipes	India: Uttar Pradesh: Ghaghra River	MTD T 3110	S1
Pangshura smithii pallidipes	India: Uttar Pradesh: Ghaghra River	MTD T 3111	S1
Pangshura smithii pallidipes	India: Uttar Pradesh: Ghaghra River	MTD T 3112	S1
Pangshura smithii pallidipes	India: Uttar Pradesh: Ghaghra River	MTD T 3113	T5
Pangshura smithii pallidipes	India: Uttar Pradesh: Ghaghra River	MTD T 3116	S1
Pangshura tentoria tentoria	India: Assam: Tezpur: Brahmaputra River	MTD T 3124	T4
Pangshura tentoria tentoria	India: Assam: Tezpur: Brahmaputra River	MTD T 3127	T1
Pangshura tentoria tentoria	India: Assam: Tezpur: Brahmaputra River	MTD T 3128	T1
Pangshura tentoria tentoria	India: Assam: Tezpur: Brahmaputra River	MTD T 3129	T1
Pangshura tentoria tentoria	India: Orissa: Mahanadi River	MTD T 3106	T3
Pangshura tentoria tentoria	India: Orissa: Mahanadi River	MTD T 3107	T2
Pangshura tentoria tentoria	India: Orissa: Mahanadi River	MTD T 3108	T2
Pangshura tentoria tentoria	India: Orissa: Mahanadi River	MTD T 3109	T2
Pangshura tentoria circumdata	Pakistan: Indus River System	MTD T 3144	T6
Pangshura tentoria circumdata	Pakistan: Indus River System	MTD T 3145	Τ7
Pangshura tentoria circumdata	India: Madhya Pradesh: Chambal River	MTD T 3120	Τ7
Pangshura tentoria circumdata	India: Madhya Pradesh: Chambal River	MTD T 3121	T6
Pangshura tentoria circumdata	India: Uttar Pradesh: Gompti River	MTD T 3082	T6
Pangshura tentoria circumdata	India: Uttar Pradesh: Gompti River	MTD T 3083	Τ7
Pangshura tentoria circumdata	India: Uttar Pradesh: Gompti River	MTD T 3084	T8
Pangshura tentoria circumdata	Unknown	AY434610	T1
Pangshura tentoria flaviventer	Nepal: Sapta Khosi River	MTD T 3132	T1
Pangshura tentoria flaviventer	Nepal: Sapta Khosi River	MTD T 3133	T1
Pangshura tentoria flaviventer	Nepal: Sapta Khosi River	MTD T 3134	T1
Pangshura tentoria flaviventer	Bangladesh: Sunargon Market	MTD T 3130	T1
Pangshura tentoria flaviventer	Unknown	AY434612	T1
Pangshura tentoria circumdata $ imes$ Pangshura tentoria flaviventer	India: Uttar Pradesh: Ghaghra River	MTD T 3114	T1
Pangshura tentoria circumdata $ imes$ Pangshura tentoria flaviventer	India: Uttar Pradesh: Ghaghra River	MTD T 3115	S1

 Table 3
 Occurrence and frequency of haplotypes in samples of *Pangshura smithii* and *P. tentoria*. Sequence numbers refer to samples deposited in the tissue collection of the Museum of Zoology Dresden (MTD T) or are accession numbers.

of both species are separated by a minimum of 58 mutation steps. Topology in the subnets remains identical then; however, a loop connecting the two subnets equally parsimonious over three haplotypes of the *P. smithii* subnet occurs only when the connection is enforced.

Within *P. smithii*, the most common haplotype S1 is confined to *P. s. pallidipes*, while the three other haplotypes S2–S4, different by one to two mutation steps, represent samples of *P. s. smithii* (Table 3). Under coalescence theory, S1 is ancestral to S2–S4.

Most sequences of *P. t. circumdata* (Indus River system, Pakistan: 3144–3145; Chambal River, Madhya Pradesh, India: 3120–3121; Gompti River, Uttar Pradesh, India: 3082–3084) correspond to three unique haplotypes (T6–T8), differing in three to five mutation steps from the most common haplotype occurring in *P. tentoria* (T1); one GenBank sequence of *P. t. circumdata* without locality data (AY434610) is identical with T1 however. T1 is ancestral to all other *tentoria* haplotypes (Fig. 2). Besides AY434610 and the above mentioned intergrade between the *P. t. circumdata* and *P. t. flaviventer* (3114) from the Ghaghra River, T1 occurs in *P. t. tentoria* from the Brahmaputra River (3127–3129) and in *P. t. flaviventer* from the Sapta Khosi River in Nepal (3132–3134), from Bangladesh (3130); also a GenBank sequence of *P. t. flaviventer* (AY434612) represents this haplotype. All four sequences of *P. t. tentoria* from the Mahanadi River (3106–3109) represent the unique haplotypes T2 and T3 that differ in five to six mutation steps from T1.

Discussion

Based on an incomplete taxon sampling (one sequence each of *B. baska, C. borneoensis, H. t. thurjii, K. dhongoka, P. s. smithii, P. t. circumdata, P. t. flaviventer, P. tecta*), a first molecular hypothesis for relationships of the genera *Batagur, Callagur, Hardella, Kachuga* and *Pangshura* was presented by Spinks *et al.* (2004) using mtDNA (cytochrome *b*, 12S rRNA genes) and nDNA data (intron from the R35 neural transmitter gene). This investigation confirmed *Pangshura* as a clade distinct

Fig. 2 TCS network for mtDNA haplotypes of *Pangshura smithii* and *P tentoria*. Connection of subnets enforced. Haplotypes with biggest outgroup probability shown as rectangles (outgroup probabilities of unconnected subnets under 90% and 95% criteria: S1 = 0.7500; T1 = 0.3871). Symbol size approximately corresponds to haplotype frequency; missing haplotypes, small circles. With exception of the line between the subnets symbolizing 55 mutation steps, each line between symbols and haplotypes indicates one mutation step. For haplotype frequencies and occurrence of haplotypes, see Table 3, for further explanation, see text.

from the sole studied *Kachuga* species, *K. dhongoka*. The latter was found to be sister of *C. borneoensis* and both together being the sister group of *B. baska*. *Pangshura* + *Hardella* were found to be the sister group of (*K. dhongoka* + *C. borneoensis*) + *B. baska*. Our phylogenetic analyses, based on a complete taxon sampling of all species and subspecies of *Pangshura* and all taxa of the other genera, corroborate that *Pangshura* is monophyletic (bootstrap and posterior probability support of 100%) and distinct from *Kachuga*, and thus support the recognition of *Pangshura* as distinct genus.

Originally, *Pangshura* was erected by Gray (1856) as a subgenus within *Batagur*, a genus that contained then the small-sized *Pangshura* species as well as species that are now placed into the genera *Batagur*, *Kachuga* and *Morenia*. Already Günther (1864) elevated *Pangshura* to full genus level, but Boulenger's (1889) influential 'Catalogue of the Chelonians and Crocodiles in the British Museum (Natural History)' relegated *Pangshura* into the synonymy of *Kachuga*, while *Batagur* and *Callagur* were recognized as distinct genera. It was not before Moll's (1986) treatise of *Kachuga* that *Pangshura* was acknowledged on the subgeneric level as being distinct from the large-sized species of *Kachuga*. Das (2001) elevated *Pangshura* to full genus level without providing the rationale that led him to this decision.

In contrast to the well-established monophyly of Pangshura, the genus Kachuga clearly is polyphyletic. Each of the studied Kachuga species groups with moderate to high support either with B. baska sensu lato or with C. borneoensis or, in the case of K. dhongoka, with a clade comprising C. borneoensis and K. trivittata. Moreover, sequences of B. baska from Indonesia and Malaysia proved to be highly distinct from sequences of this species from the Sundarbans, suggesting that a previously unidentified species is involved. Batagur baska is a rare and endangered estuarine species, distributed over a patchy range from the Sundarbans Region of north-easternmost India and neighbouring Bangladesh through the Aveyarwady (Irrawaddy) River mouth in Myanmar and the Malay Peninsula (Malaysia, southern Thailand) to southern Vietnam, Cambodia and Sumatra, and is now extirpated in much of its former range (Moll 1980; Das 1991, 1995, 2001; Ernst et al. 2000; Platt et al. 2003). Due to their large size (maximum shell length approximately 60 cm; Ernst et al. 2000), adult B. baska are rare in scientific collections and it could easily be that morphological variation was therefore overlooked until now. Anecdotal observations on the sexual dimorphism of B. baska suggest that morphological variation exists, supporting the assumption that B. baska may be a collective term for at least two distinct, large estuarine turtle species. Males from the Sundarbans and presumably also from Myanmar were described as having a pale bluish nose, deep black heads and necks, passing into a rich crimson on the base of the neck, and brilliant rosy carmine-coloured forelimbs during breeding; their iris being greenish yellow then (Anderson 1879; Rashid & Swingland 1997). In contrast, the skin and shell of Malaysian males becomes uniform jet black, without any trace of blue or red, and their iris turns to immaculate white during breeding (Moll 1980). Our known-locality samples of B. baska from the Sundarbans Region, which may be identified with the type locality 'India' of B. baska (Gray 1831), indicate that the species from Indonesia and Malaysia needs to be nomenclaturally distinguished from B. baska. In the synonymy of B. baska exist several candidates for naming the other

species. Further research is needed however, as it is unclear to which species the descriptions of *Trionyx (Tetraonyx) cuvieri* Gray, 1831 (unknown type locality) and *Tetronyx longicollis* Lesson, 1834 (type locality of Ayeyarwady River, Pegu, Myanmar) refer. The description of another possible candidate, *Tetraonyx affinis* Cantor, 1847 (type locality of Penang, Malaysia), was based on syntypes comprising specimens of *B. baska* sensu lato and *C. borneoensis* (Fritz & Havaš 2007), demanding the fixation of a lectotype.

All species in the clade comprising *B. baska* sensu lato, C. borneoensis, K. dhongoka, K. kachuga and K. trivittata are morphologically similar, large-sized riverine species with a similar natural history, and all except K. dhongoka share the for chelonians highly unusual sexual dichromatism, being important for mate choice, a character that may be regarded as a synapomorphy. Another shared sexually dimorphic character is that the costo-peripheral shell fontanelles in males never close but remain open throughout life (Moll 1980, 1986; E. O. Moll, pers. comm.). Obviously, the recognition of Kachuga besides the two monotypic genera Batagur and Callagur has rather historical than phylogenetic reasons and we conclude that a genus containing all species of the former genera Batagur, Callagur and Kachuga is a much more appropriate classification reflecting their phylogenetic relationships. Therefore, we propose placing all species into the genus Batagur Gray, 1856. This name takes precedence over the simultaneously published name Kachuga Gray, 1856 (because Kachuga was originally erected as subgenus of Batagur; ICZN 1999: Art. 61.2.1, precedence of taxon at higher rank) as well as over the younger name Callagur Gray, 1870 (ICZN 1999: Art. 23.1, principle of priority). We believe that this classification is superior to the phylogenetically also correct, but less parsimonious recognition of two genera, one for B. baska sensu lato plus K. kachuga, and another for C. borneoensis plus K. dhongoka and K. trivittata that would reflect the subclades within Batagur sensu lato. Nevertheless, it needs to be pointed out that the subclades are also supported by morphological evidence. The triturating surfaces of the jaws in B. baska sensu lato and K. kachuga have two denticulated ridges, in the other species one. Moreover, males of C. borneoensis, K. dhongoka and K. trivittata have striped shells while males of B. baska sensu lato and K. kachuga lack shell striping (Ernst et al. 2000; E. O. Moll, pers. comm.).

Our investigation provides a stable phylogenetic hypothesis for all *Pangshura* species, with *P. smithii* + *P. tentoria* being sister species and *P. tecta* and *P. sylhetensis* their successive sister-taxa. Uncertainties exist with respect to the phylogenetic position of *H. thurjii* that is suggested either as sister-taxon of *Pangshura* (BA, ML) or sister to a clade containing *Pangshura* + *Batagur* sensu lato (MP, NJ).

Within *Pangshura* and *Hardella* we found only weak support for the currently recognized subspecies; only most

sequences of *P. t. circumdata* correspond with a moderately supported clade within P. tentoria. On the other hand, a similar degree of mtDNA differentiation also occurs in the population of P. t. tentoria from the Mahanadi River that is not paralleled by a morphological segregation, while no differentiation was found between other populations of P. t. tentoria and P. t. flaviventer. Ancestral polymorphism (incomplete lineage sorting) could contribute to the lacking congruence between morphologically defined subspecies and mtDNA clades. However, at least the validity of the two subspecies of H. thurjii is also only very weakly supported from morphology, and purported differences exist only in the extent of carapace keeling. The subspecies H. t. thurjii from the Ganges and Brahmaputra drainage system has only a weak vertebral keel, whereas H. t. indi from the Indus River system is said to have two additional weak lateral keels on the pleural scutes (McDowell 1964; Ernst & Barbour 1989; Das 1991, 1995, 2001; Ernst et al. 2000). Such differences typically relate to different ontogenetic stages in geoemydid terrapins, with older individuals losing the lateral keels. Moreover, the supposed character state of H. t. indi seems to be entirely based on an observation by McDowell (1964), who studied only three specimens of H. t. indi of unknown age, and the original description of H. t. indi is contradictory ('thorax [= shell] less obscurely three-keeled' [than in *H. t. thurjii*]; Gray 1870: 58). Considering that H. t. indi has no unique haplotypes and that haplotypes within H. thurjii differ at best in two mutation steps (corresponding with an uncorrected *p* distance of only 0.1% for the two subspecies; Table 2), a continued usage of subspecies within H. thurjii seems not appropriate. Morphological differences between the subspecies of P. smithii and P. tentoria are much more pronounced, although only colouration and pattern characters are concerned. Both of the latter species comprise a subspecies, P. s. pallidipes and P. t. flaviventer, each of which is characterized by a pale colouration, including a uniform yellow instead of an intensely spotted plastron. A third subspecies within P. tentoria, P. t. circumdata, differs from P. t. tentoria and P. t. flaviventer by the presence of a distinct pink to reddish ring at the pleuro-marginal juncture of the carapace, distinct neck stripes and a red postorbital mark (Mertens 1969; Moll 1987).

Moll (1987) assigned pale-coloured *P. tentoria* from the Ghaghra River (Uttar Pradesh, India) to an intergrade population between *P. t. circumdata* and *P. t. flaviventer* because pink shell and head markings may also occur there. *Pangshura smithii* and *P. tentoria* live in this river syntopically (Moll 1987; own observation of Peter and Reiner Praschag). While we are able to confirm that *P. tentoria* from this river morphologically agree well with Moll's appraisal, we discovered there shared haplotypes in *P. smithii* and *P. tentoria*. Incomplete lineage sorting seems unlikely as explanation when the highly distinct and otherwise strictly species-specific haplotypes are

considered, differing in at least 58 mutation steps (Fig. 2) and an uncorrected average p distance of 5.68%, compared to 0.14% within *P. smithii* haplotypes and 0.16% within *P. tentoria* haplotypes. This suggests not only that interspecific hybridization may happen in syntopically occurring *P. smithii* and *P. tentoria*, but that the pale colouration of *P. tentoria* in the Ghaghra River may rather be the result of hybridization with the pale coloured *P. smithii pallidipes*, and not of subspecific intergradation with also pale coloured *P. t. flaviventer*.

Conclusions

Our mtDNA data underline that phylogeny and diversity in South and South-east Asian turtles is badly understood and further sampling, especially in the large riverine species is in dire need, also for developing effective conservation strategies. The large riverine turtles from South and Southeast Asia constitute a species complex that should be assigned to the genus Batagur Gray, 1856 and that comprises besides B. baska (Gray, 1831) the species B. borneoensis (Schlegel & Müller, 1844), B. dhongoka (Gray, 1835), B. kachuga (Gray, 1831) and B. trivittata (Duméril & Bibron, 1835), as well as one additional species allied to B. baska and B. kachuga occurring in Indonesia and Malaysia. Hardella and Pangshura represent two distinct genera with one and four wellsupported species, respectively. Distinctness of the subspecies within H. thurjii, P. smithii and P. tentoria is badly supported by mtDNA data however. Because definite diagnostic morphological characters are lacking, we suggest abandoning the recognition of the two subspecies within *H. thurjii*. Further, we provide evidence for hybridization of P. smithii pallidipes and P. tentoria in the Ghaghra River (Uttar Pradesh, India). This underlines the necessity to use nuclear genomic markers in future studies.

Acknowledgements

This study profited from a Wilhelm Peters Grant of the German Society for Herpetology and Amphibian and Reptile Husbandry (DGHT). Special thanks go to F. J. Obst (DGHT), R. Gemel and F. Tiedemann (Natural History Museum Vienna). The Austrian Embassy in Delhi supported us in receiving all proper permits. Thanks go to the Indian Ministry for Environment & Forest, Delhi for issuing the same and to H. Andrews, R. Whitaker, J. Lenin, A. Captain, D. Basu, S. Singh, R. Ghose, R. C. Samantaray, P. Sastry, D and H. Das, S. U. Sarker, and H. Lockman for friendly help on location. P. Petrás and P. Velenský, Prague Zoo, W. P. McCord and the Ambrose Monell Cryo Collection at the American Museum of Natural History, New York, provided samples of B. baska and B. trivittata. E. O. Moll and one anonymous reviewer read the manuscript and made helpful comments. Most laboratory work was done by A. Müller and Ch. Kehlmaier, Museum of Zoology Dresden.

References

- Anderson, J. (1879) [1878]. Anatomical and Zoological Researches, Comprising an Account of the Zoological Results of the Two Expeditions to Western Yunnan in 1868 and 1875, and a Monograph of the Two Cetacean Genera Platanista and Orcella. London: MacMillan.
- Barth, D., Bernhard, D., Fritzsch, G. & Fritz, U. (2004). The freshwater turtle genus *Mauremys* (Testudines, Geoemydidae) — a textbook example of an east–west disjunction or a taxonomic misconcept? *Zoologica Scripta*, 33, 213–221.
- Boulenger, G. A. (1889). Catalogue of the Chelonians, Rhynchocephalians, and Crocodiles in the British Museum (Natural History). London: British Museum.
- Clement, M., Posada, D. & Crandall, K. A. (2000). TCS: a computer program to estimate gene genealogies. *Molecular Ecology*, 9, 1657–1660.
- Das, I. (1991). Colour Guide to the Turtles and Tortoises of the Indian Subcontinent. Portishead, Avon: R & A Publishing Limited.
- Das, I. (1995). Turtles and Tortoises of India. Bombay, Delhi, Calcutta and Madras: WWF India and Oxford University Press.
- Das, I. (2001). Die Schildkröten des Indischen Subkontinents. Frankfurt am Main: Chimaira.
- van Dijk, P. P., Stuart, B. L. & Rhodin, A. G. J. (2000). Asian Turtle Trade. Proceedings of a Workshop on Conservation and Trade of Freshwater Turtles and Tortoises in Asia, Phnom Penh, Cambodia, 1–4 December 1999. *Chelonian Research Monographs*, 2, 1–164.
- Ernst, C. H., Altenburg, R. G. M. & Barbour, R. W. (2000). Turtles of the World. World Biodiversity Database, CD-ROM Series, Windows, Version 1.2. Amsterdam: Biodiversity Center of ETI.
- Ernst, C. H. & Barbour, R. W. (1989). *Turtles of the World*. Washington, DC: Smithsonian Institution Press.
- Fritz, U. & Havaš, P. (2007). Checklist of Chelonians of the World. Bonn and Dresden: German Federal Ministry of Environment, Nature Conservation and Nuclear Safety and Museum of Zoology Dresden.
- Gaffney, E. S. & Meylan, P. A. (1988). A phylogeny of turtles. In M. J. Benton (Ed.) *The Phylogeny and Classification of Tetrapods* (pp. 157–219). Oxford: Clarendon Press.
- Gray, J. E. (1831). A synopsis of the class Reptilia. In E. Griffith & E. Pidgeon (Eds) *The Animal Kingdom Arranged in Conformity with its Organization, by the Baron Cuvier, 9. The Class Reptilia Arranged by the Baron Cuvier, with Specific Descriptions* (pp. 1–110). London: Whittaker and Treacher.
- Gray, J. E. (1856) [1855]. Catalogue of Shield Reptiles in the Collection of the British Museum. Part 1. Testudinata (Tortoises). London: British Museum.
- Gray, J. E. (1870). Supplement to the Catalogue of Shield Reptiles in the Collection of the British Museum. Part 1, Testudinata (Tortoises). London: British Museum.
- Günther, A. (1864). Reptiles of British India. London: Ray Society.
- Gustincich, S., Manfioletti, G., del Sal, G., Schneider, C. & Carninci, C. (1991). A fast method for high-quality genomic DNA extraction from whole human blood. *Biotechniques*, 11, 298–302.
- ICZN [International Commission on Zoological Nomenclature] (1999). International Code of Zoological Nomenclature. Fourth Edition. London: International Trust for Zoological Nomenclature.
- IUCN [International Union for the Conservation of Nature and Natural Resources] (2006). *IUCN Red List of Threatened Species*. www.iucnredlist.org.
- Klingelhöffer, W. & Mertens, R. (1944). Bemerkungen über die Umfärbung von Callagur borneoensis. Wochenschrift für Aquarienund Terrarienkunde, 41, 35–36.

- Kuchling, G., Ko, W. K., Min, S. A., Lwin, T., Myo, K. M., Khaing, T. T., (1), Khaing, T. T., (2), Mar, W. W. & Win, N. N. (2006). Two remnant populations of the roofed turtle *Kachuga trivittata* in the upper Ayeyarwady River system, Myanmar. *Oryx*, 40, 176– 182.
- Kumar, S., Tamura, K. & Nei, N. (2004). MEGA 3: integrated software for molecular evolutionary genetics analysis and sequence alignment. *Briefings in Bioinformatics*, 5, 150–163.
- McDowell, S. B. (1964). Partition of the genus *Clemmys* and related problems in the taxonomy of the aquatic Testudinidae. *Proceedings* of the Zoological Society London, 143, 239–279.
- Mertens, R. (1969). Eine neue Rasse der Dachschildkröte, Kachuga tecta. Senckenbergiana Biologica, 50, 23–30.
- Moll, E. O. (1980). Natural history of the river terrapin, *Batagur baska* (Gray) in Malaysia. *Malaysian Journal of Science*, 6 (A), 23–62.
- Moll, E. O. (1986). Survey of the freshwater turtles of India. Part I: The genus *Kachuga*. *Journal of the Bombay Natural History Society*, *83*, 538–552.
- Moll, E. O. (1987). Survey of the freshwater turtles of India. Part II: The genus *Kachuga*. *Journal of the Bombay Natural History Society*, 84, 7–25.
- Moll, E. O., Matson, K. E. & Krehbiel, E. B. (1981). Sexual and seasonal dichromatism in the Asian river turtle *Callagur borneoensis*. *Herpetologica*, 37, 181–194.
- Platt, S. G., Stuart, B. L., Sovannara, H., Kheng, L., Kalyar & Kimchhay, H. (2003). Rediscovery of the critically endangered river terrapin, *Batagur baska*, in Cambodia, with notes on occurrence, reproduction and conservation status. *Chelonian Conservation and Biology*, 4, 691–695.
- Posada, D. & Crandall, K. A. (1998). MODELTEST: testing the model of DNA substitution. *Bioinformatics*, 14, 817–818.
- Posada, D. & Crandall, K. A. (2001). Intraspecific gene genealogies: trees grafting into networks. *Trends in Ecology and Evolution*, 16, 37–45.
- Rashid, S. M. A. & Swingland, I. R. (1997). On the ecology of

some freshwater turtles in Bangladesh. In J. V. van Abbema (Ed.) Proceedings: Conservation, Restoration, and Management of Tortoises and Turtles — An International Conference (pp. 225–242). New York, NY: New York Turtle and Tortoise Society.

- Ronquist, F. & Huelsenbeck, J. P. (2003). MRBAYES 3: Bayesian phylogenetic inference under mixed models. *Bioinformatics*, 19, 1572–1574.
- Shaffer, H. B., Meylan, P. A. & McKnight, M. L. (1997). Tests of turtle phylogeny: molecular, morphological, and paleontological approaches. *Systematic Biology*, 46, 235–268.
- Siebenrock, F. (1909). Synopsis der rezenten Schildkröten, mit Berücksichtigung der in historischer Zeit ausgestorbenen Arten. Zoologisches Jahrbuch, Abteilung für Systematik, Ökologie und Geographie der Tiere, Supplement, 10, 427–618.
- Smith, M. A. (1931). The Fauna of British India, Including Ceylon and Burma. Reptilia and Amphibia, Vol. I. — Loricata, Testudines. London: Taylor & Francis.
- Spinks, P. Q., Shaffer, H. B., Iverson, J. B. & McCord, W. P. (2004). Phylogenetic hypotheses for the turtle family Geoemydidae. *Molecular Phylogenetics and Evolution*, 32, 164–182.
- Swofford, D. L. (2002). *PAUP**. *Phylogenetic Analysis Using Parsimony* (**and Other Methods*), Version 4. Sunderland, Massachusetts: Sinauer Associates.
- Theobald, W. (1876). Descriptive Catalogue of the Reptiles of British India. Calcutta: Thacker, Spink and Co.
- Wermuth, H. & Mertens, R. (1961). Schildkröten, Krokodile, Brückenechsen. Jena: Fischer.
- Wermuth, H. & Mertens, R. (1977). Testudines, Crocodylia, Rhynchocephalia. Das Tierreich, 100, I–XXVII, 1–174.
- Zwickl, D. J. (2006). Genetic Algorithm Approaches for the Phylogenetic Analysis of Large Biological Sequence Datasets under the Maximum Likelihood Criterion, PhD Dissertation, Austin, TX: The University of Texas. [Genetic Algorithm for Rapid Likelihood Inference software available from http://www.bio.utexas.edu/faculty/ antisense/garli/Garli.html].

Appendix 1

Studied samples and sequences downloaded from GenBank. Abbreviations: AMCC, Ambrose Monell Cryo Collection at the American Museum of Natural History, New York; MTD D, Museum of Zoology Dresden, Herpetological Collection; MTD T — Museum of Zoology Dresden, Tissue Collection; NHMW, Natural History Museum Vienna, Herpetological Collection; ZSI, Zoological Survey of India, Kolkata (Calcutta). GenBank sequences were published by Barth *et al.* (2004) and Spinks *et al.* (2004).

Species	Origin	MTD T	Museum specimen	Accession number
Batagur baska	India: West Bengal: Sundarbans	3088	_	AM495267
Batagur baska	India: West Bengal: Sundarbans	3089	_	AM495268
Batagur baska	Bangladesh: Sundarbans	3123	_	AM495269
'Batagur baska'	Indonesia (confiscated specimen)	3788	_	AM691750
'Batagur baska'	Indonesia (confiscated specimen)	3789	_	AM691751
'Batagur baska'	Indonesia (confiscated specimen)	3790	_	AM691752
'Batagur baska'	Malaysia	3791	_	AM691753
'Batagur baska'	Malaysia	3792	_	AM691754
Callagur borneoensis	Unknown	3122	_	AM495270
Callagur borneoensis	Unknown	67	MTD D 43137	AM691755
Callagur borneoensis	Unknown	404	MTD D 44004	AM691756
Callagur borneoensis	Unknown	1187	MTD D 45366	AM691757
Hardella thurjii thurjii	India: Uttar Pradesh: Gompti River	3090	_	AM495271
Hardella thurjii thurjii	India: Uttar Pradesh: Gompti River	3094	_	AM495272
Hardella thurjii thurjii	India: West Bengal: Kolkata (Calcutta)	3549	ZSI	AM495273
Hardella thurjii thurjii	Bangladesh: Dhaka (Dacca)	3155	_	AM495274
Hardella thurjii indi	Pakistan: Indus River System	3150	NHMW 29289 : 6	AM495275
Hardella thurjii indi	Pakistan: Indus River System	3151	NHMW 29289 : 1	AM495277
Hardella thurjii indi	Pakistan: Indus River System	3152	NHMW 29289 : 3	AM495278
Hardella thurjii indi	Pakistan: Indus River System	3153	NHMW 29289 : 2	AM495279
Hardella thuriii indi	Pakistan: Indus River System	3154	NHMW 29289 : 4	AM495280
Kachuga dhongoka	India: Uttar Pradesh: Chambal River	3080	_	AM495281
Kachuga dhongoka	India: Uttar Pradesh: Chambal River	3081	_	AM495282
Kachuga dhongoka	India: Uttar Pradesh: Chambal River	3093	_	AM495283
Kachuga kachuga	India: Uttar Pradesh: Chambal River	3091	_	AM495284
Kachuga kachuga	India: Uttar Pradesh: Chambal River	3092	_	AM495285
Kachuga kachuga	India: Uttar Pradesh: Chambal River	3095	_	AM495286
Kachuga kachuga	India: West Bengal: Howrah Market	3098	_	AM495287
Kachuga trivittata	Unknown	3793	AMCC 164926	AM691758
Pangshura smithii smithii	Pakistan: Indus River System	3147	NHMW 33310 : 3	AM495288
Pangshura smithii smithii Pangshura smithii smithii	India: Assam: Tezpur: Brahmaputra River	3125	_	AM495289
Pangshura smithii smithii	India: Assam: Tezpur: Brahmaputta River	3126	_	AM495290
Pangshura smithii pallidines	India: Littar Pradesh: Ghadhra River	3110	_	AM495291
Pangshura smithii pallidines	India: Uttar Pradesh: Ghaghra River	3111	_	AM495292
Pangshura smithii pallidines	India: Littar Pradesh: Ghaghra River	3112	_	AM495292
Pangshura smithii pallidines	India: Uttar Pradesh: Ghaghra River	3112	_	ΔΜ495294
Pangshura smithii pallidines	India: Littar Pradesh: Ghaghra River	3116	_	AM495295
Pangshura sulhetensis	India: Ostar Pradesh: Ghagina hiver	3135	_	AM495296
Pangshura sylhetensis	India: Assam: Jia Bhoroli River	3138	_	ΔΜ495297
Pangshura sylhetensis	India: Assam: Jia Bhoroli River	3130	_	ΔΜ/195297
Pangshura sylhetensis	India: Assam: Jia Bhoroli River	3140	_	ΔΜ495299
Panachura sylhetensis	India: Assam: Jia Bhoroli River	31/1		AM/95200
Pangshura symetemsis Pangshura tecta	Pakistan: Indus River System	3141	NHMW 33311 · 1	AM495301
Pangshura tecta	India: Maharactra: Pune	3140		ΔΜ495302
Panashura tecta	India: Ilttar Pradech: Gompti River	3085		AM/95302
Pangshura tecta	India: Uttar Pradesh: Gompti River	3086		AM/9530/
Panashura tecta	Bangladesh: Supargon Market	3117		AM/95305
Pangshura tecta	Bangladesh: Sunargon Market	2119	_	AM495305
Panashura tecta	Bangladesh: Sunargon Market	2110		AM/05207
i angonula lecta Ponachuro tentorio tentorio	Dariyiauesii. Sulidiyuli ividiket Indis: Accam Taznur: Prahmanutra Piyar	212/	_	VWV02200
r angonula leniona leniona Pongchuro tontorio tontorio	inuia. Assaini. Tezpuri. Dialiniaputra River	2124	—	AMAGE200
rangsnura tentoria tentoria	inuia: Assam: Tezpur: Brahmaputra River	3127	_	AIVI495309
rangsnura tentoria tentoria Bangshura tentoria tentoria	india: Assam: Tezpur: Brahmaputra River	3128	_	AIVI495310
rangsnura tentoria tentoria	india: Assam: lezpur: Brahmaputra River	3129	_	AIVI495311
Pangsnura tentoria tentoria	India: Orissa: Mahanadi River	3106	—	AM495312

Appendix 1 Continued.

Species	Origin	MTD T	Museum specimen	Accession number
Pangshura tentoria tentoria	India: Orissa: Mahanadi River	3107	_	AM495313
Pangshura tentoria tentoria	India: Orissa: Mahanadi River	3108	_	AM495314
Pangshura tentoria tentoria	India: Orissa: Mahanadi River	3109	_	AM495315
Pangshura tentoria circumdata	Pakistan: Indus River System	3144	NHMW 33312 : 1	AM495316
Pangshura tentoria circumdata	Pakistan: Indus River System	3145	NHMW 33312 : 2	AM495317
Pangshura tentoria circumdata	India: Madhya Pradesh: Chambal River	3120	_	AM495318
Pangshura tentoria circumdata	India: Madhya Pradesh: Chambal River	3121	_	AM495319
Pangshura tentoria circumdata	India: Uttar Pradesh: Gompti River	3082	_	AM495320
Pangshura tentoria circumdata	India: Uttar Pradesh: Gompti River	3083	_	AM495321
Pangshura tentoria circumdata	India: Uttar Pradesh: Gompti River	3084	_	AM495322
Pangshura tentoria flaviventer	Nepal: Sapta Khosi River	3132	_	AM495323
Pangshura tentoria flaviventer	Nepal: Sapta Khosi River	3133	_	AM495324
Pangshura tentoria flaviventer	Nepal: Sapta Khosi River	3134	_	AM495325
Pangshura tentoria flaviventer	Bangladesh: Sunargon Market	3130	_	AM495326
Pangshura tentoria circumdata $ imes$ Pangshura tentoria flaviventer	India: Uttar Pradesh: Ghaghra River	3114	_	AM495327
Pangshura tentoria circumdata $ imes$ Pangshura tentoria flaviventer	India: Uttar Pradesh: Ghaghra River	3115	_	AM495328
GenBank sequences				
'Batagur baska'	Unknown	_	_	AY434600
Callagur borneoensis	Unknown	_	_	AY434601
Hardella thurjii thurjii	Unknown	_	_	AY434603
Kachuga dhongoka	Unknown	—	MTD D 42577	AJ564452
Kachuga dhongoka	Unknown	_	_	AY434569
Pangshura smithii smithii	Unknown	_	_	AY434589
Pangshura tentoria circumdata	Unknown	—	_	AY434610
Pangshura tentoria flaviventer	Unknown	_	_	AY434612
Pangshura tecta	Unknown	—	_	AY434583
Geoclemys hamiltonii	Unknown	—	_	AY434573
Morenia ocellata	Unknown	_	—	AY434605